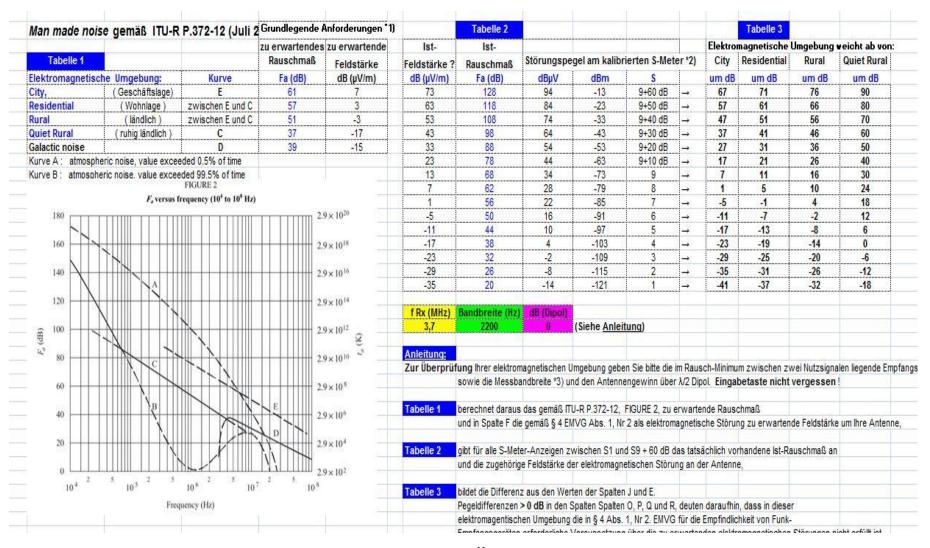

EMV

Tabellenkalkulation zur Überprüfung der elektromagnetischen Umgebung

Sebastian, DL8KSW



Einführung

Tabelle zur Überprüfung der elektro-magnetischen Umgebung

"Tabellenkalkulation zur Überprüfung der elektromagnetischen Umgebung" Sebastian, DL8KSW

Deutscher Amateur-Radio-Club e.V.
Ortsverband Niederkassel • G-53

Tabelle 1 Erwartetes Rauschmaß und Feldstärke

Tabelle 1			zu erwartendes Rauschmaß	zu erwartende Feldstärke	
Elektromagnetisch	e Umgebung:	Kurve	Fa (dB)	dB (μV/m)	
City,	(Geschäftslage)	E	-22	-16	
Residential	(Wohnlage)	zwischen E und C	-27	-21	
Rural	(ländlich)	zwischen E und C	-32	-26	
Quiet Rural	(ruhig ländlich)	С	-49	-43	
Galactic noise		D	-30	-24	

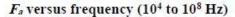
f Rx (MHz) B

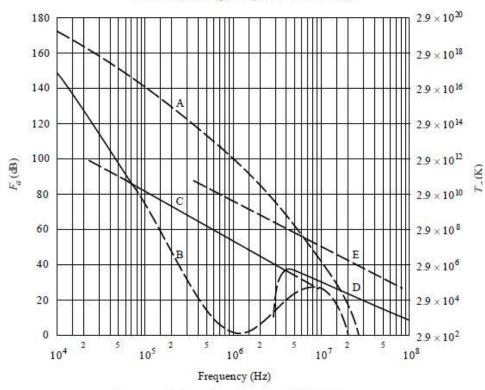
Bandbreite (Hz)

d8 (Dipol) 8

Tabelle 1 Rechengrundlagen

Berechnung Rauschmaß Fa (dB):


$$F_A = c - d \cdot \log(f)$$


Berechnung Feldstärke (μV/m):

$$E_N = F_A + 20 \cdot \log(f) + B - 95,5$$

Tabelle 1 Grafische Darstellung und Konstanten

Values of the constants c and d

Environmental category	c	d	
City (curve A)	76.8	27.7	
Residential (curve B)	72.5	27.7	
Rural (curve C)	67.2	27.7	
Quiet rural (curve D)	53.6	28.6	
Galactic noise (curve E)	52.0	23.0	

A: atmospheric noise, value exceeded 0.5% of time B: atmospheric noise, value exceeded 99.5% of time

C: man-made noise, quiet receiving site

D: galactic noise

E: median city area man-made noise minimum noise level expected

D0377-02

"Tabellenkalkulation zur Überprüfung der elektromagnetischen Umgebung" Sebastian, DL8KSW

Deutscher Amateur-Radio-Club e.V.
Ortsverband Niederkassel • G-53

Tabellen 2 und 3

	Tabelle 2					il i	Tabelle 3		
lst- Feldstärke ?	lst- Rauschmaß				1	Elektror	nagnetische Ui	mgebung v	veicht ab von:
		Störungspegel am kalibrierten S-Meter *2)				City	Residential	Rural	Quiet Rural
dB (μV/m)	Fa (dB)	dBµV	dBm	S		um dB	um dB	um dB	um dB
73	128	94	-13	9+60 dB	٠,	67	71	76	90
63	118	84	-23	9+50 dB		57	61	66	80
53	108	74	-33	9+40 dB	-	47	51	56	70
43	98	64	-43	9+30 dB	→	37	41	46	60
33	88	54	-53	9+20 dB	→	27	31	36	50
23	78	44	-63	9+10 dB		17	21	26	40
13	68	34	-73	9		7	11	16	30
7	62	28	-79	8	→	1	5	10	24
11	56	22	-85	7		-5	-1	4	18
-5	50	16	-91	6	→	-11	-7	-2	12
-11	44	10	-97	5		-17	-13	-8	6
-17	38	4	-103	4	_→	-23	-19	-14	0
-23	32	-2	-109	3	→	-29	-25	-20	-6
-29	26	-8	-115	2	-	-35	-31	-26	-12
-35	20	-14	-121	1	3	-41	-37	-32	-18

Abgelesener Pegel

Pegeldifferenz

Pegeldifferenz >> 0 dB → Störpegel ist zu groß

"Tabellenkalkulation zur Überprüfung der elektromagnetischen Umgebung" Sebastian, DL8KSW

Deutscher Amateur-Radio-Club e.V.
Ortsverband Niederkassel • G-53

Beispiel

• Ländlicher Raum

• Frequenz: 7.103 MHz

• Bandbreite: 2,7 kHz

f Rx (MHz) Bandbreite (Hz) dB (Dipol) 7,103 2700 2,15

Antennengewinn: 2,15 dBd

	1000	,	zu erwartendes	zu erwartende Feldstärke	
Tabelle 1			Rauschmaß		
Elektromagnetische Umgebung:		Kurve	Fa (dB)	dB (μV/m)	
City,	(Geschäftslage)	E	53	6	
Residential	(Wohnlage)	zwischen E und C	49	1	
Rural	(ländlich)	zwischen E und C	44	-4	
Quiet Rural	(ruhig ländlich)	С	29	-18	
Galactic noise		D	32	-15	

Beispiel

• S-Meter-Anzeige: S6

lst- Feldstärke ?	Tabelle 2 Ist- Rauschmaß						Tabelle 3			
						Elektron	nagnetische Ur	ngebung w	g weicht ab von:	
		Störungspegel am kalibrierten S-Meter			*2)	City	Residential	Rural	Quiet Rural	
dB (µV/m)	Fa (dB)	dBµV	dBm	S		um dB	um dB	um dB	um dB	
77	125	94	-13	9+60 dB		71	76	81	95	
67	115	84	-23	9+50 dB	→	61	66	71	85	
57	105	74	-33	9+40 dB	→	51	56	61	75	
47	95	64	-43	9+30 dB	→	41	46	51	65	
37	85	54	-53	9+20 dB		31	36	41	55	
27	75	44	-63	9+10 dB	→	21	26	31	45	
17	65	34	-73	9	\rightarrow	11	16	21	35	
11	59	28	-79	8	 →	5	10	15	29	
5	53	22	-85	7	1	-4	4	٩	23	
-1	47	16	-91	6	→	-7	<u>-2</u>	3	17	
-7	41	10	-97	5	\rightarrow	-13	-8	-3	11	
-13	35	4	-103	4	—	-19	-14	-9	5	
-19	29	-2	-109	3	→	-25	-20	-15	-1	
-25	23	-8	-115	2	→	-31	-26	-21	-7	
-31	17	-14	-121	1	→	-37	-32	-27	-13	

Pegel von 3 dB > 0 dB → leicht erhöhte Störung

Zusammenfassung

Vorteile:

Einfache Möglichkeit zur Feststellung des Störpegels! Schnell durchführbar!

Keine tiefergehenden Kenntnisse zur Berechnung benötigt!

<u>Nachteile:</u>

Relativ ungenau!

Nicht als Nachweis für die Bundesnetzagentur verwendbar!

Hinweise

Aktuelles zu EMV und Störungen:

http://www.darc.de/referate/emv/

Hinweise zum Eingrenzen der Störungsquelle:

http://www.darc.de/referate/emv/emv-abhilfemassnahmen/

Literatur über Frequenzrauschen

ITU-R P.372-12 "Radio Noise"

Fragen ???

